THIS REPORT HAS BEEN DELIMITED AND CLEARED FOR PUBLIC RELEASE UNDER DOD DIRECTIVE 5200.20 AND NO RESTRICTIONS ARE IMPOSED UP: DISTRIBUTION STATEMENT A APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. #### SOME MINIMAN INVARIABLE PROCEDURES FOR ESTIMATING A CUMULATIVE DISTRIBUTION FUNCTION Эγ Om ? Ar remal. University of Washington Technical Report No. 15 August 18, 1954 Contract N8onr-520 Tesk Order II Project Number NR-042-038 Laboratory of Statistical Research Department of Mathematics University of Washington Seattle, Washington ## Some Minimum Invariant Procedures for Estimating a Cumulative Distribution Function - 1. <u>Summary</u>. Some invariant procedures, which are essentially step functions, are considered as estimators of the cumulative distribution function of a univariate random variable on which a finite fixed number of observations are given, for various loss functions. Two principal classes of loss functions are considered and it is shown that for a special loss function in one class the optimum procedure is the usual sample compulative function. - 2. Introduction. Suppose that a sample $X_1, X_2, \ldots X_n$ of a one-dimensional chance variable X is given. In a recent paper, Birnbaum [1] has discussed various techniques for deciding whether X has a completely specified continuous cumulative distribution function (c.d.f.), $H(x) = P(X \le x)$. In this paper is discussed an allied problem, viz., that if $F(x) = P(X \le x)$ is the unknown continuous c.d.f. of X and if $\widehat{F}(x)$ be an estimate of F(x) based on the sample $X_1, X_2, \ldots X_n$, what would be the best estimate \widehat{F} when certain forms of the loss function are given. Consider the loss function (1) $$L(F,\hat{F}) = \int_{-\infty}^{\infty} |F(x) - \hat{F}(x)|^{T} dx,$$ where r is an integer ≥ 1 . It is almost obvious that the only invariant procedures for estimating F under the group of all one-to-one monotone transformations of the real numbers onto themselves which leave the sample values X_i (i=1,2,...n) invariant are those which estimate F(x) by a step function (2) $\widehat{F}(x) = \text{constant}$, say c_i for $X^{(i)} \leq x < X^{(i+1)}$ where $X^{(i)} < X^{(2)} < \ldots < X^{(n)}$ are the ordered observations and $X^{(0)}$ and $X^{(n+1)}$ denote $-\infty$ and $+\infty$ respectively. Using this estimate F, we get $$L(F,\hat{F}) = \sum_{j=0}^{n} \int_{\chi(j)}^{\chi(j+1)} |F(x)-c_j|^r dF(x)$$ $$= \frac{1}{r+1} \sum_{j=0}^{n} \left[F(X^{(j+1)}) - c_{j} \right] \left[F(X^{(j+1)}) - c_{j} \right]^{r} - \left(F(X^{(j)}) - c_{j} \right) \left[F(X^{(j)}) - c_{j} \right]^{r} \right]$$ and the rimit Land side of this equation is a special function of $F(S_1)$, $F(S_2)$, $F(S_3)$ where S_1 , S_2 , S_3 is the unorder of the second row from a theorem of simple and S_4 in $G(S_3)$ that $G(S_4, \widetilde{S}_3)$ is a distribution free statistic and hence the risk S_4 being the matter tion of 1 with respect to the distribution $G(S_4, \widetilde{S}_3)$ is called the S_4 to the distribution $G(S_4, \widetilde{S}_3)$ is called the S_4 to be a rectangular distribution over $G(S_4, \widetilde{S}_3)$ and write (4) $$R = E \sum_{j=0}^{n} \int_{X_{j}}^{X_{j+1}} |x-e_{j}|^{r} dx$$ where $X_1 < X_2 < \cdots < X_n$ is an ordered sample of size n from this rectangular distribution over (0,1), X_0 and X_{n+1} denote 0 and 1 respectively, and the symbol E denotes that the expectation is taken with respect to the rectangular distribution over (0,1). In the rest of this paper, we shall use consistently the letter E to denote the fact that the expectation is to be taken with respect to the rectangular distribution over (0,1). The same argument applies when the loss function is of the form (5) $$L(F,\hat{F}) = \int_{-\infty}^{\infty} \frac{|F(x) - \hat{F}(x)| r}{|F(x)| [1 - F(x)]} dF(x)$$ and in this case by taking F as in (2) we obtain (6) $$R = E \sum_{j=0}^{n} \int_{x_{j}}^{x_{j+1}} \frac{\int_{x-c_{j}}^{x} \int_{x}^{r}}{x(1-x)} dx$$ where X_j ; j=0,1,...n+1 are the same as in (4). It is obvious that since risk R is constant, a minimax procedure will be to choose $c_j; j=0,1...n$, such that R is minimum. We consider in this paper the values of c_j when the loss function is of the form (1) for all integers r > 1 and when r is and when the loss function is of the form (5) for r_{\wedge} en even integer > 2. The case when r is odd in (5) seems to be rather complicated. 3. The loss function $$L(F,\hat{F}) = \int_{-\infty}^{\infty} [F(x) - \hat{F}(x)]^2 dF(x)$$ In this case $$R = E \sum_{j=0}^{n} \int_{X_{j}}^{X_{j+1}} (x - c_{j})^{2} dx$$ (7) =1/3 $$\sum_{j=0}^{n} E\left[\left(x_{j+1}^3 - x_j^3\right) - 3e_j\left(x_{j+1}^2 - x_j^2\right) + 3e_j^2\left(x_{j+1} - x_j\right)\right]$$ Since the distribution of the j-th order statistic X_j in a sample of size n from the rectangular distribution over (0,1) is a Beta distribution with probability density (8) $$p(y) = \frac{1}{B(j, n-j+1)} y^{j-1} (1-y)^{n-j}, 0 \le y \le 1$$ it is easily seen that for any positive integer r, (9) $$E(X_{j}^{r}) = \frac{j(j+1)...(j+r-1)}{(n+1)(n+2)-...(n+r)}$$, and (10) $$E(X_{j+1}^r - X_j^r) = \frac{r(j+1)(j+2)...(j+r-1)}{(n+1)(n+2)...(n+r)}, r \neq 1$$ It will be useful to remark that (3.0) holds for all j; j=0, 1,...,n. Substituting in R we obtain after some simplification. $$R = 1/3 - \frac{2}{(n^{j+1})(n+2)} \sum_{j=0}^{n} (j+1)c_j + \frac{1}{n+1} \sum_{j=0}^{n} c_j^2.$$ (11) $$= \frac{1}{6(n+2)} + \frac{1}{n+1} \sum_{j=0}^{n} (c_j - \frac{j+1}{n+2})^2.$$ We see thus that R is minimized by choosing (12) $$c_j = \frac{j+1}{n+2}$$; $j = 0,1,...n$. and hence the minimax invariant procedure is to estimate F(x) by (13) $$\hat{f}(x) = \frac{j+1}{n+2}$$; $x_j \le x < x_{j+1}$, $j = 0, 1, ..., n$, where $(X_1, X_2, \dots X_n)$ is the ordered sample and X_0 and X_{n+1} stand for $-\infty$ and $+\infty$ respectively. The minimum risk corresponding to this procedure is seen to be 1/6(n+2). It is of some interest to note that the risk corresponding to the usus! procedure of taking $e_{\mathbf{j}} = \mathbf{j}/\mathbf{n}$ is given by 1/6n. 4. The loss function $$L(F,\widehat{F}) = \int_{-\infty}^{\infty} |F(x) - \widehat{F}(x)| dF(x)$$. For this case (14) $$R = E \sum_{j=0}^{n} \int_{K_{j}}^{X_{j+1}} |x-c_{j}| dx = \sum_{j=0}^{n} \mathcal{E}_{j}$$, where $$\mathcal{E}_{j} = \mathbb{E} \int_{X_{j}}^{X_{j+1}} |x-c_{j}| dx$$ (15) $$= \frac{1}{2} \mathbb{E} \left[(X_{j+1} - c_j) \middle| X_{j+1} - c_j \middle| - (X_j - c_j) \middle| X_j - c_j \middle| \right].$$ Now (16) $$E[(X_j-c_j)/X_j-c_j] = \int_{c_j}^1 (y-c_j)^2 p(y)dy - \int_0^{c_j} (y-c_j)^2 p(y)dy$$ where p(y) is given by (8), and similarly we can get $E\left[(X_{j+1}-c_j)/X_{j+1}-c_j\right]$ Substituting in (15) we easily obtain $$E_{i} = \frac{1}{2} \binom{n}{j} \left[(n-j) \int_{c_{j}}^{1} (y-c_{j})^{2} y^{j} (1-y)^{n-j-1} dy - (n-j) \int_{0}^{c_{j}} (y-c_{j})^{2} y^{j} (1-y)^{n-j-1} dy - j \int_{c_{j}}^{1} (y-c_{j})^{2} y^{j-1} (1-y)^{n-j} dy + j \int_{0}^{c_{j}} (y-c_{j})^{2} y^{j-1} (1-y)^{n-j} dy.$$ This eventually leads to for j=0,1,2,...,n. Since $R = \int_{j=0}^{n} \mathcal{E}_{j}$, and from (15) we see that for each j, \mathcal{E}_{j} is positive and depends only on j, it is obvious that to minimize R, it is necessary and sufficient to minimize each \mathcal{E}_{j} separately. We have (19) $$\frac{\partial \mathcal{E}_{j}}{\partial c_{j}} = 2 \binom{n}{j} \int_{-\frac{1}{2}B(j+1,n-j+1)}^{-\frac{1}{2}B(j+1,n-j+1)} + \sum_{k=0}^{n-j} (-1)^{k} \binom{n-j}{k} \frac{c_{j}^{j+k+1}}{j+k+1}$$ $$= 2 \binom{n}{j} \left[\int_{0}^{c_{j}} z^{j} (1-z)^{n-j} dz - \frac{1}{2}b(j+1,n-j+1) \right]$$ and (20) $$\frac{\partial^2 G_j}{\partial c_j^2} = 2\binom{n}{j} c_j^j (1-c_j)^{n-j}$$. Setting $\frac{\partial \mathcal{E}_{j}}{\partial c_{j}} = 0$ and solving we obtain c_{j} as the median of the Beta distribution with density (21) $$g(z) = \frac{1}{B(j+1,n-j+1)} i \int_{z}^{z} (1-z)^{n-j}, 0$$ 1, for j=0, 1,2,...,n. Since (20) shows that $\frac{2c_j}{2c_j}>0$ for $0< c_j<1$, it follows that this solution for c_j in fact minimizes S_j for j=0,1,...,n, and hence minimizes R. The minimax invariant procedure is thus to estimate F(x) by $$\hat{f}(x) = c$$; $X \le x < X$ $j=0, 1, ..., n$, where (X_1, X_2, \ldots, X_n) is the ordered sample, X_0 and X_{n+1} stand for $-\infty$ and $+\infty$ respectively, and c_j $(j=0,1,\ldots,n)$ is the median of the Beta distribution with density (21). An alternative way of obtaining this result is given in section 9. It is rather interesting to note that for the loss function discussed in the last Section, c_j was obtained as the mean of the same Beta distribution. The actual computation of the values of c_j (j=0,1,...n) can be easily carried out, for a given n, with the help of the tables of the incomplete Beta-function $\lceil 3 \rceil$. In the notation of the tables (22) $$\mathbb{I}_{\mathbf{x}}(p,q) = \frac{\int_{0}^{\infty} x^{p-1} (1-x)^{q-1} dx}{\int_{0}^{1} x^{p-1} (1-x)^{q-1} dx} .$$ Thus we have to find the value of x such that (23) $$I_x(j+1,n-j+1) = \frac{1}{2}$$ Using the relation (24) $$I_x(p,q) = 1-I_{1-x}(q,p)$$, it is seen that (25) $$c_{n-j} = 1 - c_i$$ and thus only about half the total number of c values have to be actually obtained from the tables. The values of c_j (j = 0,1,...,n) for n = 1,2,...,12 to two decimal places have been computed and tabulated below. Table 1 Values of c_j (j=0,1,...,n) for n=1,2,....12 c_0 cı c₂ C3 | CA C5 Ch c7 cs cg ^e10 ^c11 C12 .71 . 50 .79 .61 .84 .16 .39 .13 .50 .69 .87 . 31 42 .58 .74 . 26 .89 .11 .50 .64 .77 .91 .23 . 36 .08 .44 .56 . 20 .32 .68 .80 .92 .39 .50 .61 .72 .82 .93 .07 .18 .28 .35 .16 .65 .07 .26 .45 .55 .74 .84 .93 .32 .43 .59 .68 .77 .06 .15 .231 .50 .85 .94 .û6 .22 . 30 . 38 .54 .62 .70 .78 .86 .94 11 .14 .46 .20 .50 .58 .65 .73 .80 .87 .95 12 .05 .13 .27 .35 .42 5. The loss function $$L(F, \hat{F}) = \int_{-\infty}^{\infty} [F(x) - \hat{F}(x)]^2 / F(x) [1-F(x)] dF(x)$$. For this loss function, as mentioned before, we get $$R = E \sum_{j=0}^{n} \int_{X_{j}}^{X_{j+1}} \frac{(x-e_{j})^{2}}{x(1-x)} dx$$ (26) $$= \mathbb{E} \int_{0}^{X_{1}} \frac{(x-c_{0})^{2}}{x(1-x)} dx + \sum_{j=1}^{n-1} \mathbb{E} \left[-(X_{j+1}-X_{j}) + c_{j}^{2} (\log X_{j+1}-\log X_{j}) - (1-c_{j})^{2} \left\{ \log (1-X_{j+1}) - \log (1-X_{j}) \right\} \right] + \mathbb{E} \int_{X_{n}}^{1} \frac{(x-c_{n})^{2}}{x(1-x)} dx.$$ For finite risk the integrals in the first and the last terms of the above expression must be finite. The necessary and sufficient condition for this is that $c_0=0$ and $c_n=1$. Our set c_j $(j=0,1,\ldots,n)$ must then be such that $c_0=0$ and $c_n=n$. With the convention that $0 \times \infty = 0$, we can, therefore, write (26) in the form (27) $$R = \sum_{j=0}^{n} E\left[-(x_{j+1}-x_{j}) + c_{j}^{2}(\log x_{j+1}-\log x_{j}) - (1-c_{j})^{2}\left[\log(1-x_{j+1})-\log(1-x_{j})\right]\right]$$ The probability density of X is given by (8), from which we obtain (28) $$E(\log X_j) = j \binom{n}{j} \int_0^1 y^{j-1} (1-y)^{n-j} \log y \, dy$$ and In order to evaluate (28) and (29) we make use of the following lemmas: Lemma 5.2: (30) $$\int_{0}^{1} y^{j-1} (1-y)^{n-j} \log y \, dy = \frac{\Gamma(j)\Gamma(n-j+1)}{\Gamma(n+1)} \left[\psi(j) - \psi(n+1) \right] \text{ where } \psi(k) = \Gamma(k)/\Gamma(k).$$ Proof. Let $f(\alpha) = \int_0^1 y^{\alpha-1}(1-y)^{n-j} dy$. The left hand side of (30) is $f'(\alpha)$ evaluated at $\alpha = j$ as can be seen by differentiating under the integral sign. But $f(\alpha) = \int_0^1 (\alpha) \int_0^1 (n-j+1)/f'(\alpha+n-j+1)$, and the desired result is obtained by evaluating the logarithmic derivative of $f(\alpha)$ at $\alpha = j$. #### Lemma 5.2: (31) $$\int_{0}^{1} y^{j-1} (1-y)^{n-j} \log (1-y) dy = \frac{\Gamma(j)\Gamma(n-j+1)}{\Gamma(n+1)} \left[\psi(n-j+1) - \psi(n+1) \right]$$ where $\psi(k) = \frac{\Gamma(k)}{\Gamma(k)}$. <u>Proof.</u> Exactly as in Lemma 5.1, or easily obtained from it by a change of variables. Utilizing Lemmas 5.1 and 5.2, we obtain (32) $$E(\log X_j) = \psi(j) - \psi(n+1)$$ and (33) E log $$(1-x_j) = \psi(n-j+1) - \psi(n+1)$$, where $\psi(k) = \int_{-\infty}^{\infty} \frac{(k)}{\sqrt{2}} (k)$. Further, since $\int_{-1}^{1}(k+1) = k \int_{-1}^{1}(k)$, $\int_{-1}^{1}(k+1) = \int_{-1}^{1}(k) + k \int_{-1}^{1}(k)$, we see that $\int_{-1}^{1}(k+1) = \int_{-1}^{1}(k+1) / \int_{-1}^{1}(k+1) = 1/k + \chi(k)$, and hence the function χ satisfies the difference equation (34) $$\psi(k+1) - \psi(k) = 1/k$$. From (32), (33) and (34) we get (35) $$E(\log X_{j+1} - \log X_j) = 1/j$$, for $j \neq 0$ (36) $$E\left[\log (1-X_{j+1}) - \log (1-X_j)\right] = -1/(n-j)$$, for $j \neq n$. Substituting from (10), (35), and (36) in (27) we obtain at once (37) $$R = \frac{2}{n(n+1)} + \sum_{j=1}^{n-1} \left[-\frac{1}{n+1} + \frac{1}{j} c_j^2 + \frac{1}{n-j} (1-c_j)^2 \right] = \frac{1}{n} + \sum_{j=1}^{n-1} \frac{n}{j(n-j)} (c_j - \frac{j}{n})^2$$ It is seen from (37) that R is minimized by choosing (38) $$i_j = j/n \text{ for } j=1,2,...,(n-1).$$ Since $c_0 = 0$ and $c_n = 1$, this expression for c_j holds good also for j = 0, and j = n. Thus the minimax invariant estimate \hat{F} for the loss function in this Section turns out to be the usual sample cumulative function (39) $$\hat{F}(x) = c_j = j/n$$, when $X_j \le x < X_{j+1}$, $j = 0, 1, ..., n$, where $x_1 < x_2 < \ldots < x_n$ is an ordered sample from the c.d f. F, x_0 and x_{n+1} standing for -co and $+\infty$ respectively. The actual value of the risk corresponding to this estimate is 1/n. 6. The loss function $$L(F,\widehat{F}) = \int_{-\infty}^{\infty} F(x) - \widehat{F}(x) / F(x) [1-F(x)] dF(x)$$. In this case we obtain (40) $$R = E \sum_{j=0}^{n} \int_{X_{j}}^{X_{j+1}} |x-c_{j}| / x(1-x) dx = \sum_{j=0}^{n} \mathcal{E}_{j}$$, where (41) $$\mathcal{E}_{j} = E \int_{X_{j}}^{X_{j+1}} |x-c_{j}| /x(1-x) dx$$ As in the last Section, it will be seen that for finite risk the necessary and sufficient condition is that $c_0 = 0$ and $c_n = 1$. For $j \neq 0$, n, we obtain (42) $$\mathcal{E}_{j} = \mathbb{E}\left[c_{j} | \log c_{j} - \log x_{j} | - c_{j} | \log c_{j} - \log x_{j+1} | + (1-c_{j}) | \log(1-c_{j}) - \log(1-c_{j}) | \log(1-c_{j}) - \log(1-x_{j}) \right].$$ The distribution of X_j has probability density p(y) given by (8) and the distribution of X_{j+1} has the probability density (45) $$q(y) = \frac{1}{\frac{1}{3(j+1,n-j)}} y^{j} (1-y)^{n-j-1}, 0 \le y \le 1.$$ Using (8) and (43) we can express \mathcal{E}_{i} in the form (44) $$\mathbf{g}_{\mathbf{j}} = \binom{\mathbf{n}}{\mathbf{j}} \left[\int_{0}^{c_{\mathbf{j}}} \phi(c_{\mathbf{j}}, \mathbf{y}) \, d\mathbf{y} \right]_{c_{\mathbf{j}}}^{1} \phi(c_{\mathbf{j}}, \mathbf{y}) \, d\mathbf{y}$$ where (45) $$\phi(c_j,y) = \left[c_j \log c_j + (1-c_j) \log(1-c_j) - c_j \log y - (1-c_j) \log(1-y)\right] y^{j-1} (1-c_j) \log(1-y)$$ Straightforward integration leads to (46) $$\int \!\!\!\!/ (c_j, y) dy = y^j (1-y)^{n-j} \left[c_j (\log c_j - \log y) + (1-c_j) (\log(1-c_j) - \log(1-c_j) + (c_j - y) y^{j-1} (1-y)^{n-j-1} dy + constant \right]$$ which enables us to obtain & as (47) $$\mathcal{E}_{\mathbf{j}} = \binom{n}{\mathbf{j}} \left[\int_{0}^{c_{\mathbf{j}}} (c_{\mathbf{j}} - \mathbf{y}) \mathbf{y}^{\mathbf{j} - 1} (1 - \mathbf{y})^{\mathbf{n} - \mathbf{j} - 1} d\mathbf{y} - \int_{c_{\mathbf{j}}}^{1} (c_{\mathbf{j}} - \mathbf{y}) \mathbf{y}^{\mathbf{j} - 1} (1 - \mathbf{y})^{\mathbf{n} - \mathbf{j} - 1} d\mathbf{y} \right]$$ for j = 1, 2, ..., n-1. Since \mathcal{E}_0 and \mathcal{E}_n are fixed, and each \mathcal{E}_j is positive and depends only to minimize R it is clearly necessary and sufficient to minimize \mathcal{E}_j . We see that oution A BARBATT fallows ence function nd for or (50). the last . zion. ositive (52) $$\mathcal{E}_{\mathbf{j}} = \frac{1}{2s+1} \quad \mathbb{E} \sum_{k=0}^{2s+1} {2s+1 \choose k} (-c_{\mathbf{j}})^{2s+1-k} (x_{\mathbf{j}+1}^{k} - x_{\mathbf{j}}^{k})$$ for j = 0, 1, 2, ..., n. Substituting from (10) in (52) we obtain $$\mathcal{E}_{j} = \frac{1}{n+1} \quad c_{j}^{2s} + \frac{1}{2s+1} \sum_{k=2}^{2s+1} {2s+1 \choose k} (-c_{j})^{2s+1-k} \frac{k(j+1) \dots (j+k-1)}{(n+1) \dots (n+k)}$$ $$= \frac{1}{n+1} \quad \left[c_{j}^{2s} + \sum_{k=2}^{2s+1} {2s \choose k-1} (-c_{j})^{2s+1-k} \frac{(j+1) \dots (j+k-1)}{(n+1) \dots (n+k)} \right]$$ For conciseness we introduce the following notation somewhat similar to the binomial and distinguished from it by an asterisk: (54) $$\left(t - \frac{a+1}{b+1}\right)^{q*} = t^q + \sum_{k=1}^{q} (-1)^k {q \choose k} t^{q-k} \prod_{i=1}^k \frac{a+i}{b+i}$$ for fixed real a and b and a positive integer q. It is easily verified that for any positive integer r, (55) $$\frac{d^{\mathbf{r}}}{dt^{\mathbf{r}}} \left(t - \frac{a+1}{b+1} \right)^{q^{*}} = q \left(q-1 \right) \dots \left(q-r+1 \right) \left(t - \frac{a+1}{b+1} \right)^{\left(q-r \right) *} \text{ when } r \leq q$$ Using this notation we can write (56) $$\mathcal{E}_{j} = \frac{1}{n+1} \left(c_{j} - \frac{j+1}{n+2} \right)^{2s*}$$ We have to choose c_j so as to minimize R. Obviously minimizing R is equivalent to minimizing \mathcal{E}_j separately for each j. We obtain (57) $$\frac{\partial \mathcal{E}_{j}}{\partial c_{i}} = \frac{2s}{n+1} \left(c_{j} - \frac{j+1}{n+2}\right)^{(2s-1)+}$$, and (58) $$\frac{\partial^2 \mathcal{E}_j}{\partial c_j^2} = \frac{2s(2s-1)}{n+1} (c_j - \frac{j+1}{n+2})^{-(2s-2)*}$$ Since $$\mathcal{E}_{j} = E \int_{X_{j}}^{X_{j}+1} (x-c_{j})^{2s} dx > 0$$, it is clear that (59) $$\frac{\partial^2 \vec{\xi}_j}{\partial c_j^2} = 2s(2s-1) \mathbb{E} \int_{X_j}^{X_j} (x-c_j)^{2s-2} dx > 0.$$ Let $f(c_j) = \frac{\partial \mathcal{E}_j}{\partial c_j}$. It is easily seen that f(0) is negative and f(1) is positive, and since $f'(c_j) > 0$ for all real c_j , $f(c_j)$ is a strictly increasing function of c_j . Hence $f(c_j) = 0$ for one and only one real value of c_j , and this c_j necessarily lies between 0 and 1. Thus we find that \mathcal{E}_j , and hence R_j is minimized by setting $\frac{\partial \mathcal{E}_j}{\partial c_j} = 0$ and solving for c_j the resulting equation (60) $$(c_{j} - \frac{j+1}{n+2})^{(r-1)*} = 0$$ This equation has one and only one real root which lies between 0 and 1. The minimax invariant procedure for the loss function of this Section is thus to estimate F(x) by $$\hat{f}(x) = e_j \qquad ; \qquad x_j \le x < x_{j+1}$$ $$j = 0, 1, \dots n,$$ where X_j ; $j=0, 1, \ldots, n+1$, have been defined earlier and c_j is the real root of (60). It can further be seen from (60) that the equation remains unchanged if we replace j by n-j and c_j by $l-c_j$. Hence $c_{n-j}=l-c_j$, and we see that in practice the number of equations to be solved is about half the sample size. It may be noticed that for r=2, the equation (60) reduces to a linear equation (61) $$(c_{j} - \frac{j+1}{n+2})^{1*} = 0$$ which has the unique solution $c_j = \frac{j+1}{n+2}$ as obtained earlier in (12). 8. The loss function $$L(F,\widehat{F}) = \int_{-\infty}^{\infty} \left[F(x) - \widehat{F}(x)\right]^{c} / F(x) \left[1 - F(x)\right] dF(x)$$ where r is any positive even integer. Let r=2s, then (62) $$R = E \sum_{j=0}^{n} \int_{X_{j}}^{X_{j+1}} \frac{(x-c_{j})^{2s}}{x(1-x)} dx = \sum_{j=0}^{n} \mathcal{E}_{j},$$ where (63) $$\mathcal{E}_{j} = E \int_{X_{j}}^{X_{j+1}} \frac{(x-c_{j})^{2s}}{x(1-x)} dx.$$ Since $X_0=0$ and $X_{n+1}=1$, it is clear that in order to obtain finite risk it is necessary and sufficient that $c_0=0$ and $c_n=1$. For $j\neq 0$, n, we can write $$\mathcal{E}_{j} = E \left[\sum_{h=0}^{2s-2} \frac{1}{h+1} \ a_{h} \ (X_{j+1}^{h+1} - X_{j}^{h+1}) + c_{j}^{2s} (\log X_{j+1} - \log X_{j}) - (1-c_{j}^{2s} \left\{ \log (1-X_{j+1}) - \log (1-X_{j}) \right\} \right]$$ (64) where (65) $$a_h = -\sum_{i=0}^{2s-2-h} {2s \choose i} (-c_j)^i$$; $h=0,1,2,...,(2s-2)$. Substituting from (10), (35) and (36), we get (66) $$\mathcal{E}_{\mathbf{j}} = \frac{2s-?}{h=0} \frac{(\mathbf{j}+\mathbf{h})!n!}{(\mathbf{n}+\mathbf{h}+\mathbf{l})!j!} a_{\mathbf{h}} + \frac{1}{\mathbf{j}} c_{\mathbf{j}}^{2s} + \frac{1}{n-\mathbf{j}} (1-c_{\mathbf{j}})^{2s}$$ and substituting from (65), we can write (67) $$G_{j} = \frac{n!}{j!} \sum_{h=0}^{2s-2} \frac{(j+h)!}{(n+h-1)!} \sum_{i=0}^{2s-2-h} (-1)^{i+1} {2s \choose i} e_{j}^{i} + \frac{1}{j} e_{j}^{2s} + \frac{1}{n-j} (1-e_{j})^{2s}$$ This is a 2sth degree polynomial in c. Collecting the coefficients of like powers of c. we obtain (68) $$\mathcal{E}_{j} = \frac{n}{j(n-j)} c_{j}^{2s} - \frac{2s}{n-j} c_{j}^{2s-1} + \sum_{k=0}^{2s-2} \varepsilon_{k}^{k} c_{j}^{k}$$, where (69) $$\varepsilon_{k} = (-1)^{k+1} {2s \choose k} \left[\frac{n!}{j!} \sum_{h=0}^{2s-2-k} \frac{(j+h)!}{(n+h+1)!} - \frac{1}{n-j} \right]$$ for k=0,1,2,...,2s-2. To simplify (68) further, we state and prove the following lemma: Lemma 8.1. If j and n are positive integers and j<n, then $$\frac{\mathbf{n}!}{\mathbf{j}!} \sum_{h=0}^{\mathbf{q}} \frac{(\mathbf{j}+h)!}{(\mathbf{n}+h+1)!} = \frac{1}{\mathbf{n}-\mathbf{j}} \left[1 - \prod_{\alpha=1}^{\mathbf{q}-1} \frac{\mathbf{j}+\alpha}{\mathbf{n}+\alpha} \right] ,$$ Proof. The left hand side $$= \binom{n}{j} \sum_{h=0}^{q} \frac{(j+h)!(n-j)!}{(n+h+1)!}$$ $$= \binom{n}{j} \sum_{h=0}^{q} \int_{0}^{1} x^{j+h} (1-x)^{-n-j} dx$$ $$= \binom{n}{j} \int_{0}^{1} (x^{j} - x^{j+q+1}) (1-x)^{n-j-1} dx$$ = the right hand side, after simplification. Substituting in (69) from the lemma when q=2s-2-k, we obtain (70) $$g_{k} = (-1)^{k} \frac{1}{n-j} {2s \choose 1} \int_{\alpha=1}^{2s-1-k} \frac{j+\alpha}{n+\alpha}$$ for k=0, 1, 2,..., 2s-2, and substituting now in (68) we obtain (71) $$\mathcal{E}_{\mathbf{j}} = \frac{\mathbf{n}}{\mathbf{j}(\mathbf{n}-\mathbf{j})} \left[\mathbf{c}_{\mathbf{j}}^{2s} + \sum_{k=0}^{2s-1} {2s \choose k} (-\mathbf{c}_{\mathbf{j}})^k \right]_{s=0}^{2s-1-k} \frac{\mathbf{j}+\alpha}{\mathbf{n}+\alpha} = \frac{\mathbf{n}}{\mathbf{j}(\mathbf{n}-\mathbf{j})} (\mathbf{c}_{\mathbf{j}} - \frac{\mathbf{j}}{\mathbf{n}})^{2s}$$ in the notation introduced in (54). Now with the same reasoning as in the last section it will be seen that \mathcal{E}_j and hence R is minimized by setting $\frac{\partial \mathcal{E}_j}{\partial c_j} = 0$ and solving for c_j the resulting equation (72) $$(c_j - j/n)^{(r-1)*} = 0.$$ This equation has one and only one real root which lies between 0 and 1. Since for j=0, (72) reduces to $c_0^{r-1}=0$ giving $c_0=0$ as the only real root, and for j=n, it reduces to $(c_n-1)^{r-1}=0$, giving $c_n=1$ as the only real root, it follows that we can say that the minimax invariant proceedure for the loss function of this Section is to estimate F(x) by $$f(x) = c_j$$; $X_j \le x < X_{j+1}$ $j = 0, 1, ..., n,$ where X_j ; $j=0, 1, \ldots, n+1$ have been defined earlier and c_j is the real root of (72). Again the number of equations to be solved in practice will be about half the sample size since it can be easily seen that (72) remains unchanged by replacing j by n-j and c_j by $1-c_j$, so that $c_{n-j}=1-c_j$. For r=2, the equations (72) reduces to $c_j - j/n = 0$ giving $c_j = j/n$ for all j. 9. The loss function $L(F,\widehat{F}) = \int_{-\infty}^{\infty} |F(x) - \widehat{F}(x)|^r dF(x)$, where r is any positive integer. (73) $$R = F \sum_{j=0}^{n} \int_{X_{j}}^{X_{j+1}} |x-e_{j}|^{r} dx = \sum_{j=0}^{n} \mathcal{E}_{j},$$ where (74) $$\mathcal{E}_{\mathbf{j}} = \frac{1}{\mathbf{r}+\mathbf{1}} \mathbb{E}\left[\left(\mathbf{x}_{\mathbf{j}+\mathbf{1}} - \mathbf{c}_{\mathbf{j}}\right) \middle| \mathbf{x}_{\mathbf{j}+\mathbf{1}} - \mathbf{c}_{\mathbf{j}} \middle| \mathbf{r} - \left(\mathbf{x}_{\mathbf{j}} - \mathbf{c}_{\mathbf{j}}\right) \middle| \mathbf{x}_{\mathbf{j}} - \mathbf{c}_{\mathbf{j}}^{\mathbf{r}}\right]$$ Using (8) we obtain and similarly, (76) $$E\left[\left(X_{j+1} - c_{j}\right) \middle| X_{j+1} - c_{j}\right] = (n-j) \binom{n}{j} \left[\int_{c_{j}}^{1} (y-c_{j})^{r+1} y^{j} (1-y)^{n-j-1} dy - \int_{0}^{c_{j}} (c_{j}-y)^{r+1} y^{j} (1-y)^{n-j-1} dy \right].$$ From (75) and (76) we obtain $$\mathcal{E}_{j} = \frac{1}{r+1} \binom{n}{j} \left[\int_{c_{j}}^{1} (y-c_{j})^{r+1} y^{j-1} (1-y)^{n-j-1} (ny-j) dy + (-1)^{r} \int_{0}^{c_{j}} (y-c_{j})^{r} y^{j-1} (1-y)^{n-j-1} (ny-j) dy \right]$$ Again it is obvious that to minimize R is equivalent to minimizing $\mathbf{\hat{s}_j}$ for each j. Further we see that the conditions for differentiation with respect to $\mathbf{c_i}$ under the integral sign in (77) are satisfied, and we obtain $$\frac{\partial \mathcal{E}_{j}}{\partial c_{j}} = -\binom{n}{j} \left[\int_{c_{j}}^{1} (y-c_{j})^{r} y^{j-1} (1-y)^{n-j-1} (ny-j) dy \right]$$ $$+ (-1)^{r} \left[\int_{0}^{1} (y-c_{j})^{r} y^{j-1} (1-y)^{n-j-1} (ny-j) dy \right]$$ (78) and for r 22. $$\frac{\partial^{2} \xi}{\partial c_{j}^{2}} = r \left(\frac{1}{3} \right) \left[(y-2j)^{\gamma-1} y^{j-1} (1-y)^{\alpha-j-1} (ny-1) dy + (-1)^{\gamma} \int_{0}^{c_{j}} (y-c_{j})^{\gamma-1} y^{j-1} (1-y)^{\alpha-j-1} (ny-j) dy \right]$$ $$= r (y-1) \left[\left(\frac{1}{3} \right)^{\gamma-1} \left[x-c_{j} \right]^{\gamma-1} + x > y \right]$$ he in fact on to the section of the sition of the property of the section and and thefter \$\(\lambda_{\colored}\) for all solving for a line of the first of the state of the same o $$(30) \int_{\alpha_{j}}^{1} (y-\alpha_{j})^{p} y^{j-1} (1-y)^{n-j-1} (m-j)^{n} y^{j} (y-\alpha_{j})^{p} y^{j-1} (1-y)^{n-j-1} (m-j) dy = 0$$ Thus the problem reduces to the of salving the store exaction for $j=0,1,\ldots,n$. The general volution of (80) giving a_j explicitly in terms of j, n, and r does not seem to be possible. We shall, however, simplify the equation so that it should not be too difficult to obtain the solution in any riven case. It can, however, be proved from (80) that $a_{n-j}=1$ and that the number of equations to be solved in gractice will be shout half the sample size. ien can erite (30) en (81) $$\int_{0}^{1} (y-c_{j})^{r} y^{j-1} (1-y)^{n-j-1} (ny-j) dy = \begin{cases} 1-(-1)^{r} \end{cases} \int_{0}^{r} (y-c_{j})^{r} y^{j-1} (1-y)^{n-j-1} (ny-j) dy.$$ It would be seen that the right hand side of this equation would be of incornerse only when r is odd, for when r is even, it request to zero. ine left band side of equation (81) den le so apprend to (82. $$\sum_{k=0}^{r} k {r \choose r} (-c_j)^{r-kn} (j+k, n-j+1),$$ with indicates that the coefficient of a_j^r is seen and the constant a_k^r and the a_k^r and reduce it further to the form (83) $$\operatorname{rL}(j,r-j+1) \sum_{k=1}^{r} {r-1 \choose k-1} \left(-c_j\right)^{r-k} \frac{j(j+1), (j+1)}{(n+1)(n+2), (n+1)}$$ which by making use of the notation introduced in (54) can be written as (8.) $$(-1)^{r-1}r^{-1}(j_{1}1, n-j+1)(\alpha_{j} \cdot \frac{j_{1}}{n_{1}})^{(r-1)},$$ As mentioned before, when r is even, the right tend the e^{-r} e united (3.) reduces to vero and cancelling out the non-zero coefficient ($1_i^{p-1}r$; j_{i+1}, n, j_{i+1}) from the left hand side as expressed by (34) we obtain c_j as a root of the same equation (60) obtained earlier by a different method. The right hand side of the equation (d1), except for the factor $\begin{bmatrix} 1 & (-1)^T \end{bmatrix}$, can be written as (35) $$\sum_{k=0}^{r} {r \choose k} (-c_j)^{r-k} \int_{0}^{c_j} \sum_{s=0}^{n-j} (-1)^{s-1} (j_{\dagger s}) {n-j \choose s} y^{s+j+s-1} dy,$$ and by making use of the relation (84) $$\sum_{k=0}^{\infty} (-1)^k {r \choose k} \frac{1}{k+1} = F(t, r+1)$$ it can be reduced to (87) $$(-1)^{r-1}r \sum_{s=0}^{n-j} (-1)^s \binom{n-j}{s} B (r, j+s+1)c_j^{r+j+s}$$ Using (84) and (85) we can, thus, write the equation (81) as (88) $$B(j+1, n-j+1)(c_j - \frac{j+1}{n+2})^{(r-1)*} = \left[1 - (-1)^r\right] \sum_{s=0}^{n-j} (-1)^s {n-j \choose s} E(r, j+s+1)c_j^{r+j+s}$$. This equation is to be solved for c_j to get a minimax invariant procedure for estimating F when the loss function is given by (1). When r is even, the factor $1-(-1)^r=0$ and we get an equation of degree (r-1). When r is odd, the factor $1-(-1)^r=2$ and the equation reduces to (89) $$\sum_{s=0}^{n-j} (-1)^{s} {n-j \choose s} B(r, j+s+1) c_{j}^{r+j+s} - \frac{1}{2} B(j+1, n-j+1) (c_{j} - \frac{j+1}{n+2})^{(r-1)*} = 0$$ which is an equation of degree (n+r). In either case there is one and only one real root which lies between 0 and 1 and the set of such roots for j=0, 1, ..., n minimizes R. An alternative way of expressing the right hand side of (81) is to rewrite (87) in the following form: $$(-1)^{r-1} \text{ r! } \sum_{s=0}^{n-j} (-1)^{s} {n-j \choose s} \frac{c_{j}^{r+j+s}}{(j+s+1)(j+s+2)\dots(j+s+r)}$$ $$= (-1)^{r-1} \text{ r! } \sum_{s=0}^{n-j} (-1)^{s} {n-j \choose s} \int_{0}^{c_{j}} \int_{0}^{r} \dots \int_{0}^{z_{2}} z_{1}^{j+s} dz_{1} \dots dz_{r}^{z_{r}}$$ $$= (-1)^{r-1} \text{ r! } \int_{0}^{c_{j}} \int_{0}^{z_{r}} \dots \int_{0}^{z_{2}} z_{1}^{j} (1-z_{1}^{z})^{n-j} dz_{2} \dots dz_{r}^{z_{r}}$$ The equation (88) can, therefore, also be expressed as (91) $$B(j+1, n-j+1)(c_j - \frac{j+1}{n+2})^{(r-1)*} = \left[1-(-1)^r\right](r-1)! \int_0^{c_j} \int_0^{z_r} ... \int_0^{z_2} z_1^j (1-z_1)^{n-j} dz_1 ... dz_r.$$ From this form, it is easily seen that for r=1, the equation reduces to (92) $$B(j+1, n-j+1) = 2 \begin{pmatrix} c_j & j \\ & 2 \end{pmatrix} (1-3)^{n-j} dZ$$ which shows that ci is the median of the Beta distribution with density $$g(z) = \frac{1}{B(j+1, n-j+1)} z^{j} (1-z)^{n-j}, 0 \le z \le 1$$ as obtained earlier in Section 4. I would like to acknowledge some very helpful discussions with Professors Z. W. Birmbaum and H. Rubin during the preparation of this paper. ### te de Marce - [1] 1. Limbaum. "Minter option-free facts of the for Continuous Metri- - [1] initially and a state of the th 3 Inclinate for Namericka Amissis SOF HALL and spenue tos agreles 21, California 2 John . Lifetigal imm membia. aboratary Tel Bone E Torren of " I dier-to The effective Large William II. The White Heat served Lines Told and the property of N T A SHOW NO ME AND STREET STATE " M" I A M T " MAR" med : The season of second of the second A Section 1 428 884 . 17 AND THE PART STREET, NO. 1944 at the same of the same of the same of intenta Y . 'Mr. 1- n: THE STREET OF STREET STREET United Talasani, 2 "elect to " " 1 a deplement hartane, the one Transfer Column Colorabia Paliva 815 See Tree, See ord 1 Serversor H. Alien Unlife Completes on Methotics Judgment's of Dieseco. Cherto W. Himais 3 Fee esser J 'clfowlky PARTY OF PERENTAL Covered Contract C there have not \si Days rivers of Matsensijes the Liables University of Sorth Garoline Chapel Hill, Perth Feolies. 2 restrant J. Negra Fidth hims Laberaburg Colvenius of hillings house, hillians ABT REAL SHEET TELL SHEET SEE | Institute for Numerical Analysis
405 Hilgard Avenue
Los Angeles 24, California | 2 | |--|-------------| | Chief, Statistical Engineering Laboratory | | | National Bureau of Standards Washington 25, D. C. | 1 | | RAND Corporation | | | 1500 Fourth Street
Santa Monica, California | 1 | | Applied Mathematics and | | | Statistics Laboratory | | | Stanford University | | | Stanford, California | 3 | | Profesior Carl B. Allendoerfer | | | Department of Mathematics | | | University of Washington | | | Seattle 5, Washington | 1 | | Professor W. G. Cochran | | | Department of Biostatistics | | | the Johns Hopkins University | | | Baltimore S., Maryland | 1 | | Professor Benjamin Epstein | | | Department of Mathematics | | | Wayne University | | | Tetroit 1, Michigan | 1 | | Professor Herbert Solomon | | | Teachers College | | | Columbia University | | | New York, New York | 1 | | Professor W. Allen Wallis | | | Committee on Statistics | | | University of Chicago | , | | Chicago 37, Illinois | 1 | | Professor J. Wolfowitz Department of Mathematics | | | Cornell University | | | Ithaca, New York | 1 | | Lunaca, New Tork | .T . | | Department of Mathematical Statists | ics | |-------------------------------------|-----| | University of North Carolina | | | Chapel Hill, North Carolina | 2 | | Professor J. Neyman | | | Statistical Laboratory | | | University of California | | | Berkeley, California | 2 | | Professor S. S. Wilks | | | Department of Mathematics | | | Princeton, New Jersey | 1 | | | | # Armed Services Technical Information Algericy Because of our limited supply, you are requested to return this copy WHEN IT HAS SERVED YOUR PURPOSE so that it may be made available to other requesters. Your cooperation will be appreciated. NOTICE: WHEN GOVERNMENT OR OTHER DRAWINGS, SPECIFICATIONS OR OTHER DATA ARE USED FOR ANY PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY RELATED GOVERNMENT PROCUREMENT OPERATION, THE U. S. GOVERNMENT THEREBY INCURS NO RESPONSIBILITY, NOR ANY OBLIGATION WHATSOEVER; AND THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED, FURNISHED, OR IN ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA IS NOT TO BE REGARDED BY IMPLICATION OR OTHERWISE AS IN ANY MANNER LICENSING THE HOLDER OR ANY OTHER PERSON OR CORPORATION, OR CONVEYING ANY RIGHTS OR PERMISSION TO MANUFACTURE, USE OR SELL ANY PATENTED INVENTION THAT MAY IN ANY WAY BE RELATED THERETO. Reproduced by DOCUMENT SERVICE CENTER KNOTT BUILDING, DAYTON, 2, 0410 UNCLASSIFIE